Data from an experiment may result in a graph indicating exponential growth. This implies the formula of this growth is \(y = k{x^n}\), where \(k\) and \(n\) are constants. Using logarithms, we can ...
Exponential and logarithmic equations are fundamental in mathematics, crucial for understanding growth patterns, decay processes, and solving complex problems. This video provides a clear and ...
\({\log _a}a = 1\) (since \({a^1} = a\)) so \({\log _7}7 = 1\) \({\log _a}1 = 0\) (since \({a^0} = 1\)) so \({\log _{20}}1 = 0\) \({\log _a}p + {\log _a}q = {\log _a ...
Concepts covered in this course include: standard functions and their graphs, limits, continuity, tangents, derivatives, the definite integral, and the fundamental theorem of calculus. Formulas for ...
What are the underlying principles of how populations change over time? Two basic principles are involved, the idea of exponential growth and its ultimate control. The basics of population ecology ...